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Abstract In the design of a structural system, the optimum values of design
variables cannot be derived analytically. Structural engineering problems have
various design constraints concerning structural security measures and practicability
in production. Thus, optimization becomes an important part of the design process.
Recent studies suggested that metaheuristic methods using random search proce-
dures are effective for solving optimization problems in structural engineering. In
this chapter, the flower pollination algorithm (FPA) is presented for dealing with
structural engineering problems. The engineering problems are about pin-jointed
plane frames, truss systems, deflection minimization of I-beams, tubular columns,
and cantilever beams. The FPA inspired from the reproduction of flowers via
pollination is effective to find the best optimum results when compared to other
methods. In addition, the computing time is usually shorter and the optimum results
are also robust.
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1 Introduction

In solving optimization problems, traditional optimization methods such as
gradient-based methods may not be able to cope with high nonlinearity and mul-
timodality. Evolutionary algorithms and nature-inspired algorithms tend to produce
better results for highly nonlinear problems. Such nature-inspired metaheuristic
algorithms often imitate the successful nature of some biological, physical, or
chemical systems in nature. They often have several processes as numerical,
algorithmic steps in solving an optimization problem. Each metaheuristic algorithm
can have different inspiration from the nature and special rules according to the
process of the natural systems. Detailed information about several metaheuristic
algorithms can be found in the literature [1, 2]. Inspiration and pioneer papers of
several metaheuristic algorithms are given in Table 1.

In structural engineering, economy is one of the main goals of the design
engineering. The optimum design variables ensuring security measures and the
minimum cost cannot be found with linear equations. As the equations and system
behavior can be highly nonlinear, iterative numerical algorithms have been
employed to find a solution. Using metaheuristic algorithms, the global optimum
solution can be found more effectively.

In this chapter, the flower pollination algorithm (FPA) developed by Yang [16]
is presented. Several structural optimization problems were investigated using FPA
and the optimum results were compared with other optimization methods.

Table 1 Metaheuristic algorithms and inspirations

Algorithm Inspiration

Genetic algorithm [3, 4] Darwinian evolution in nature

Simulated annealing [5] Annealing process of materials

Ant colony optimization [6] Behavior of ants foraging

Bee algorithm [7] Behavior of bees

Particle swarm optimization [8] Swarming behavior of birds and fish

Tabu search [9] Human memory

Harmony search [10] Musical performance

Big bang big crunch [11] Evolution of the universe

Firefly algorithm [1] Flashing characteristic of fireflies

Cuckoo search [12] Brood parasitic behavior of cuckoo species

Charged system search [13] Electrostatic and Newtonian mechanic laws

Bat algorithm [14] Echolocation characteristic of microbats

Eagle strategy [15] Foraging behavior of eagles

Flower pollination [16] Pollination of flowering plants

Ray optimization [17] Refraction of light
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2 Flower Pollination Algorithm

In nature, the main purpose of the flowers is reproduction via pollination. Flower
pollination is related to the transfer of pollen, which is done by pollinators such as
insects, birds, bats, other animals or wind. Some flower types have special polli-
nators for successful pollination. The four rules of pollination have been formulated
based on the inspiration from flowering plants and they form the main updating
equations of the flower pollination algorithm [16].

1. Cross-pollination occurs from the pollen of a flower of different plants.
Pollinators obey the rules of a Lévy distribution by jumping or flying distant
steps. This is known as global pollination process.

2. Self-pollination occurs from the pollen of the same flower or other flowers of the
same plant. It is local pollination.

3. Flower constancy is the association of pollinators and flower types. It is an
enhancement of the flower pollination process.

4. Local pollination and global pollination are controlled by a probability between
0 and 1, and this probability is called as the switch probability.

In the real world, a plant has multiple flowers and the flower patches release a lot
of pollen gametes. For simplicity, it is assumed that each plant has one flower
producing a single pollen gamete. Due to this simplicity, a solution (xi) in the
present optimization problem is equal to a flower or a pollen gamete. For
multi-objective optimization problems, multiple pollen gametes can be considered.

In the flower pollination algorithm, there are two key steps involving global and
local pollination. In the global pollination step, the first and third rules are used
together to find the solution of the next step (xi

t+1) using the values from the
previous step (step t) defined as xi

t. Global pollination is formulized in Eq. (1).

xtþ 1
i ¼ xti þ L xti � g�� � ð1Þ

The subscript i represents the ith pollen (or flower) and Eq. (1) is applied for the
pollen of the flowers. g� is the current best solution. L is the strength of the
pollination, which is drawn from a Lévy distribution.

The second rule is used for local pollination with the third rule about flower
constancy. The new solution is generated with random walks as seen in Eq. (2).

xtþ 1
i ¼ xti þ e xtj � xtk

� �
ð2Þ

where xj
t and xk

t are solutions of different plants. ε is randomized between 0 and 1.
According to the fourth rule, a switch probability (p) is used in order to choose the
type of pollination which will control the optimization process in iterations.

The details of the optimization process can be seen in the pseudocode which is
given for the flower pollination algorithm.
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Objective minimize or maximize f(x), x=(x1, x2,…. xd)
Initialize a population of n flowers or pollen gametes with random numbers 
Find the best solution (g*) of the initial population
Define a switch probability (p) 
while (t<Number of iterations)
for i=1:n (n is the number of flowers or pollen in the population)

if rand<p
Global pollination using Eq.(1)

else
Local pollination using Eq.(2)

end if
Evaluate new solutions
Update the better solutions in the population

end for
Find the current best solution (g*)

end while

Flower pollination algorithm was first proposed for the optimization problems
with a single objective. Then, Yang et al. developed a multi-objective approach for
FPA [18].

3 Numerical Examples

In this chapter, six numerical examples are investigated using the FPA. They are
pin-jointed plane frame optimization, truss system optimization, vertical deflection
minimization of an I-beam, cost optimization of a tubular column, and weight
optimization of cantilever beams (two types of cantilever beams).

3.1 Pin-Jointed Plane Frame Optimization Problem

A pin-jointed plane frame with five members is given in Fig. 1. The system is
symmetrical and thus only half of the system with three members is optimized for
the minimum weight. Topology optimization is done to find the optimum values of
θ1 and θ2 angles shown in the figure. The system has a fixed base. This example
was originally given by Majid [19]. The vertical deflections of joints 1 and 2, used
in the design constraints, are defined as

D1 h1; h2ð Þj j �Max D; ð3Þ
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and

D2 h1; h2ð Þj j �Max D; ð4Þ

where θ1 and θ2 are searched within a range defined as minimum (θmin) and
maximum (θmax) limits.

The members have a constant cross-sectional area (A) and an elasticity modulus
(E). P1 and P2 loads are used in the system. The length between the supports is
defined as l.

The lengths of the members are defined in Eqs. (5)–(7) for members 1, 2, and 3,
respectively.

l1 ¼ l
2cosðh1Þ ð5Þ

l2 ¼ l
2cosðh2Þ ð6Þ

l3 ¼ l
2cosðh1Þcosðh2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 h1ð Þþ cos2 h2ð Þ � 2 cos h1ð Þ cos h2ð Þ2cosðh1 � h2Þ

p
ð7Þ

Since the members of the system have the same cross-sectional area, the total
length of the system can be taken as the optimization objective in order to minimize
the overall weight. The objective function is shown in Eq. (8).

Minimize f h1; h1ð Þ ¼
X3
i¼1

li ð8Þ

If Δ = (Δ1, Δ1)
t, KΔ = F where K is the stiffness matrix and F is the load vector.

Since K is equal to BTkB, these matrices are given in Eqs. (9) and (10).

k ¼
EA
l1

0 0
0 EA

l2
0

0 0 EA
l3

2
64

3
75 ð9Þ

Fig. 1 The optimized system [19]
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B ¼
sinðh1Þ 0

0 sinðh2Þ
1 �1

2
4

3
5 ð10Þ

Thus, the stability equation (KΔ = F) of the system can be written as

EA
sin2ðh1Þ

l1
þ 1

2l3
� 1

2l3

� 1
2l3

sin2ðh2Þ
l2

þ 1
2l3

" #
D1

D1

� �
¼

P1
2
P2
2

� �
ð11Þ

and Δ is then solved in the optimization process starting from random θ1 and θ2
values.

The optimization process has been carried out for the design constants given in
Table 2. The results of the flower pollination algorithm were compared with the
other methods employing GA [20] and CS [12].

The optimum results together with the results of other approaches are given in
Table 3. The table shows that the proposed method is effective to find better
solutions.

The numerical example is done by taking the switch probability as 0.5 and the
number of population as 5. The optimum solution is found at the 1609th iteration.
The convergence of the optimization is seen in the objective function versus iter-
ations as shown in the plot given in Fig. 2.

As seen in the optimum results, θ1 is nearly equal to θ2. Since the objective
function is the minimization of the total length, the length of the third member is
nearly zero. Thus, the method is effective to find the global optimum value.

Also, the optimization process is done for different cross-sectional areas and
force values. In all these cases, P2 is taken as half of P1. The optimum results of the

Table 2 Design constants of
numerical example

Max Δ 5 mm

θmin 0

θmax π/3 (rad)

A 100 mm2

E 200,000 MPa

P1 100 kN

P2 50 kN

L 1000 mm

Table 3 Optimum results of
the numerical example

Method θ1 (rad) θ2 (rad) F (θ1, θ2)

FPA 0.477634 0.477133 1125.87

GA 0.475784 0.472764 1125.98

CS 0.477459 0.477446 1125.92
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objective function for different cross-sectional areas and forces are given in Figs. 3
and 4, respectively. In Fig. 3, the upper limits of the angles were found as the
optima for small cross-sectional areas.

3.2 A Three-Bar Truss System Optimization Problem

A three-bar truss structure is given in Fig. 5. This problem was first presented in
Nowcki [21]. The objective function is about the minimization of the volume of the
truss structure and this function is given in Eq. (12).

Fig. 2 Objective function
versus iteration

Fig. 3 Optimum results for
different cross sections

Fig. 4 Optimum results for
different forces
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Minimize : f A1;A2ð Þ ¼ 2
ffiffiffi
2

p
A1 þA2

� �
l ð12Þ

The design variables are the cross-sectional areas of structural members. Since
the system is symmetric, only cross sections shown with A1 and A2 are optimized.
The optimization problem is carried out for stress constraints. These constraints are

g1 ¼
ffiffiffi
2

p
A1 þA2ffiffiffi

2
p

A2
1 þ 2A1A2

P� r� 0; ð13Þ

g2 ¼
A2ffiffiffi

2
p

A2
1 þ 2A1A2

P� r� 0; ð14Þ

g3 ¼
1

A1 þ
ffiffiffi
2

p
A2

P� r� 0: ð15Þ

The cross-sectional areas were searched for the ranges; 0 ≤ A1 ≤ 1 and
0 ≤ A2 ≤ 1. The length, the load, and the stress limit were taken as l = 100 cm;
P = 2 kN, and σ = 2 kN/cm2, respectively. The optimum results are summarized in
Table 4 together with the optimum results obtained by other optimization methods.

The result of Tsai [24] seems to be lower than the present results, but the result
of Tsai [24] is not acceptable because one of the design constraints (defined by g1)
is slightly violated in their study. Using the values of the design variables, the stress
on a bar does not obey the stress constraint and the security of the system is not
provided.

Fig. 5 Truss optimization
problem

Table 4 Optimization results

st_max Park et al.
[22]

Ray and
Saini [23]

Tsai
[24]

Yang and
Gandomi
[12]

Gandomi
et al. [14]

Present
study

A1 0.78879 0.79500 0.788 0.78863 0.78867 0.78853

A2 0.40794 0.39500 0.408 0.40838 0.40902 0.40866

fmin 263.8965 264.3000 263.68 263.8962 263.9716 263.8958
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3.3 Vertical Deflection Minimization Problem of an I-Beam

The FPA is also tested for the problem presented by Gold and Krishnamurty [25].
The optimization objective is to minimize the vertical deflection of an I-beam as
shown in Fig. 6.

The vertical deflection of an I-beam is depended to design load (P), length of the
beam (L), and modulus of elasticity which are taken as 600 kN, 200 cm, and
20000 kN/cm2, respectively. The load (Q) in the other direction is taken as 50 kN.

The deflection of a beam is defined by

f xð Þ ¼ PL3

48EI
ð16Þ

and the objective function of numerical example can be written as Eq. (17) when
the design constants and the moment of inertia (I) of the I-beam are defined in the
Eq. (16).

Minimize f b; h; tw; tf
� � ¼ 5000

twðh�2tf Þ3
12 þ bt3f

6 þ 2btf ðh�tf
2 Þ2

ð17Þ

According to the objective function given in Eq. (17), the design variables are h, b,
tw, and tf. The ranges of these variables are

10� h� 80;

10� b� 50;

0:9� tw � 5 and

0:9� tf � 5:

ð18Þ

The cross section of an I-beam must be <300 cm2 and the allowable bending stress
of the beam is 6 kN/cm2. In that case, the cross section and stress constraints can be
written as Eqs. (19) and (20):

g1 ¼ 2btw þ twðh� 2tf Þ� 300; ð19Þ

Fig. 6 I-beam problem
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g1 ¼
180000h

twðh� 2tf Þ3 þ 2btwð4t2f þ 3hðh� 2tf ÞÞ
þ 15000b

t3wðh� 2tf Þþ 2twb3
� 6: ð20Þ

The optimum result obtained by the flower pollination algorithm was compared
with the results by other methods such as the adaptive response surface method
(ARSM), improved ARSM [26], and cuckoo search [12]. The results are presented
in Table 5.

The optimum value of FPA has been obtained for 25 pollen agents and 5000
evaluations of design variables. With the increase in iterations, the algorithm stops
if further improvement for the optimum results cannot be obtained. In the actual
runs of the algorithm, the only improvement is the difference between the worst and
best results in this case.

Comparing to the results of CS, a minor improvement of the optimum results can
be seen, but in the engineering design, it is not very important. In addition to best
optimum results, the convergence and minimization of computational time are also
important for metaheuristic algorithms. Also, the same optimum results must be
obtained for various runs of the optimization process. For a population of 25 pollens
and for a fixed number of 5000 evaluations, the same results were obtained for
every run. For 3000 evaluations, the best optimum results are generally found. Even
to increase the number of evaluations to 15000, the maximum and minimum
objective functions are generally the same. This shows the stability and robustness
of the algorithm.

3.4 Cost Optimization of Tubular Column Under
Compressive Load

The tubular column is shown in Fig. 7 [27]. The tubular column is axially loaded
with a load (P), and the upper and the lower bounds of the columns are supported
from hinged bearings. The design constants of the optimization are shown in
Table 6.

The types of constraint about compressive and buckling are important for the
column. The compressive stress of the column must be lower than the yield stress of
the tubular column. This constraint is given as Eq. (21).

Table 5 Optimum results for
I-beam example

CS ARSM Improved
ARSM

Present
study

h 80.00 80.00 79.99 80.00

b 50.00 37.05 48.42 50.00

tw 0.9 1.71 0.9 0.9

tf 2.3216715 2.31 2.40 2.3217922

Fmin 0.0130747 0.0157 0.131 0.0130741
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g1 ¼
P

pdtry
� 1� 0 ð21Þ

The axial load must be lower than the buckling load of the column defined as the
Euler buckling load:

Pkr ¼ p2EI
l2

ð22Þ

where I is the moment of inertia of the tubular column section. When Eq. (22) is
modified for the column section, g2; the constraint is formed as given in Eq. (23):

g2 ¼
8PL2

p3Edtðd2 þ t2Þ � 1� 0: ð23Þ

The objective function is to minimize

Fig. 7 Tubular column and
A-A cross-section

Table 6 Design constants of
the tubular column

Symbol Definition Value

P Axial force 2500 kgf

σy Yield stress 500 kgf/cm2

E Modulus of elasticity 0.85x106 kgf/cm2

ρ Density 0.0025 kgf/cm3

L Length of column 250 cm
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f d; tð Þ ¼ 9:8dtþ 2d; ð24Þ

which is the sum of the material and construction costs of the tubular column.
The ranges of the design variables found in objective function can also be given

as constraints. In this example, the diameter (d) of the column must be between 2
and 14 cm, while the thickness (t) of the column is a variable between 0.2 and
0.8 cm. These ranges are formulized as the following constraints:

g3 ¼
2:0
d

� 1� 0 ð25Þ

g4 ¼
d
14

� 1� 0 ð26Þ

g5 ¼ 0:2
t

� 1� 0 ð27Þ

g6 ¼
t
0:8

� 1� 0 ð28Þ

The optimization is done for 25 pollens and 200 iterations. The total running
time of the optimization algorithm is <0.1 s. The statistical results of the opti-
mization results are shown in Table 7. Nearly the best and the worst results are
equal to each other.

The results are compared with the results by other methods and are summarized
in Table 8. The FPA-based approach is more effective than the other methods. In
addition, the convergence of the algorithm is very effective.

Table 7 Statistical results of optimization of tubular column example

No. pollen No. evals. Best Average Worst St. deviation

25 5000 26.4994969 26.499497 26.4994974 1.699 x 10−7

Table 8 Optimum results for tubular column example

Hsu and Liu [27] Rao [28] CS [12] Present study

d 5.4507 5.44 5.45139 5.451160

t 0.292 0.293 0.29196 0.291965

g1 −3.45 × 10−5 −0.8579 0.0241 9.4343 × 10−7

g2 1.32 × 10−4 0.0026 −0.1095 −4.249 × 10−7

g3 −0.6331 −0.8571 −0.6331 −0.6331

g4 −0.6107 0 −0.6106 −0.6106

g5 −0.3151 −0.7500 −0.3150 −0.3150

g6 −0.6350 0 −0.6351 −0.6350

Fmin 26.4991 26.5323 26.53217 26.49948
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3.5 Weight Optimization of Cantilever Beams

Two types of cantilever beams are optimized using FPA. In the first example,
(Fig. 8) a beam with square section is investigated. Also, the inner part of the
section is empty. The second example (Fig. 9) beam has a rectangular cross section.

3.5.1 Weight Optimization of Cantilever Beams (Example 1)

The example given by Fleury and Braibant [29] is optimized by using FPA. The
cantilever beam is shown in Fig. 8. The beam is rigidly supported from one end and
the other end is free. A vertical load is applied from the free end of the beam. The
cantilever beam is optimized for an objective function

Minimize f Xð Þ ¼ 0:0624 x1 þ x2 þ x3 þ x4 þ x5ð Þ ð29Þ

subject to

g Xð Þ ¼ 61
x31

þ 37
x32

þ 19
x33

þ 7
x34

þ 1
x35

� 1� 0: ð30Þ

Fig. 8 The cantilever beam (Example 1)

Fig. 9 The cantilever beam (Example 2)

Application of the Flower Pollination Algorithm … 37



The beam is divided into five steps with different cross sections. The thickness
(t) is taken as 2/3, and it is fixed for each step of the cantilever beam. For all design
variables from 1 to 5 (j = 1− 5), the following ranges

0:01� xj � 100 ð31Þ

are also taken into consideration.
The optimum results were compared with the results by CS [12] and other

methods [30] as shown in Table 9.
The objective function is the same for all methods because the sensitivity of the

results of the other methods is not known. Comparing to CS, it is possible to find
the optimum results with 25 pollens and 300 search iterations while CS is per-
formed for 50 cuckoos and 2500 search iterations.

3.5.2 Cantilever Beam Optimization (Example 2)

The cantilever beam shown in Fig. 9 contains ten design variables. This example
was originally given by Thanedar and Vanderplaats [31]. The cross section of the
beam is rectangular. The first five design variables are the width (x1–x5) of the
cantilever beam. The height of the beam (x6–x10) is the other variable. The opti-
mization objective is given below.

Minimize V ¼
X5
i¼1

xixiþ 5li ð32Þ

The length of a step (li) is fixed and 100 cm in value. The optimization is done
considering 11 constraints formulized as

g1 ¼
600P
x5x210

� 14;000� 0 ð33Þ

Table 9 The optimum results of cantilever beam (Example 1)

Methods x1 x2 x3 x4 x5 Fmin

MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA(I) 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA(II) 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

Present study 6.0202 5.3082 4.5042 3.4856 2.1557 1.33997

CONLIN CONvex LINearization, MMA method of moving asymptotes, GCA generalized convex
approximation
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g2 ¼
6Pðls þ l4Þ

x4x29
� 14;000� 0 ð34Þ

g3 ¼
6Pðls þ l4 þ l3Þ

x3x28
� 14;000� 0 ð35Þ

g4 ¼
6Pðls þ l4 þ l3 þ l2Þ

x2x27
� 14;000� 0 ð36Þ

g5 ¼
6Pðls þ l4 þ l3 þ l2 þ l1Þ

x1x26
� 14;000� 0 ð37Þ

g6 ¼
Pl3

3E
1
Is
þ 7

I4
þ 19

I3
þ 37

I2
þ 61

I1

	 

� 2:7� 0 ð38Þ

g7 ¼
x10
x5

� 20� 0 ð39Þ

g8 ¼
x9
x4

� 20� 0 ð40Þ

g9 ¼
x8
x3

� 20� 0 ð41Þ

g10 ¼
x7
x2

� 20� 0 ð42Þ

g11 ¼
x6
x1

� 20� 0 ð43Þ

The solution range ares

1� xi � 5 for i ¼ 1 to 5 ð44Þ

and

30� xi � 65 for i ¼ 1 to 5 ð45Þ

In addition, P = 50,000 kN and E = 2 × 107 N/cm2. The optimum results are
presented in Table 10. The FPA algorithm is effective to find the minimum
objective function value of the numerical example.
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4 Conclusion

From the extensive discussions in this chapter, it can be concluded that the FPA is
an effective and suitable algorithm for solving structural engineering problems. It is
also easy to implement.

For the pin-jointed plane frame optimization problem, the best optimum results
have been obtained by FPA comparing to GA [20] and CS [12]. In addition, the
problem has been solved for different loads. As the load increases, the objective
function (total length of bars) also increases.

The optimization results of three-bar truss system by the FPA have also been
compared with the results by CS [12], bat algorithm [14], and several other methods
[22–24]. The results of FPA are slightly better than the results of other methods
without exceeding the design constraints.

For the third example, the vertical deflection of an I-beam has been minimized.
An important reduction of the existing best results is not provided, but similar
results were obtained with a slight improvement using FPA. The major advantage is
the shorter computation time and the robustness of the method because the optimum
results were obtained for a much lower number of function evaluations than that in
CS [13].

The tubular column design under a compressive load is a major structural
engineering problem. The results for this example have been compared with the
results by CS [12] and several other approaches. The results obtained by FPA are
more effective than others.

The last examples are about two types of cantilever beams and the weight
optimization of structural elements has been carried out. Comparing with other

Table 10 The optimum results of cantilever beam (Example 2)

Thanedar and
Vanderplaats
[31]

Lamberti and
Pappalettere
[32]

Huang
and
Arora
[33]

BA [14] Present
study

x1 3.06 – – 2.99204 2.98211

x2 2.81 – – 2.77756 2.77002

x3 2.52 – – 2.52359 2.51546

x4 2.2 – – 2.20455 2.19861

x5 1.75 – – 1.74977 1.74722

x6 61.16 – – 59.84087 59.94777

x7 56.24 – – 55.55126 55.6512

x8 50.47 – – 50.4718 50.58328

x9 44.09 – – 44.09106 44.17907

x10 35.03 – – 34.99537 35.02744

Best
objective

63110 65352.2 63108.7 61914.9 61849.9
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methods, the improvement of the result is not physically meaningful for the first
cantilever beam example; however, the results are obtained after a much lower
number of iterations comparing with those in CS [12]. For the second cantilever
beam example with 10 variables and 11 constraints, FPA is very effective and has
obtained much better results.

All the above confirm that FPA is a feasible algorithm for optimization in
structural engineering by providing better designs with less computing time and
improving the robustness of finding the best optimum values. The effectiveness of
FPA can be attributed to the fact that it is a good combination of local search
(self-pollination) and global search (cross-pollinations). It can be expected that FPA
can be used to solve many other optimization problems.

References

1. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)
2. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications.

Wiley, New York (2010)
3. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison

Wesley, Boston (1989)
4. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,

Ann Arbor (1975)
5. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220,

671–680 (1983)
6. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of

cooperating agents. IEEE Trans. Syst. Man Cybern. B 26, 29–41 (1996)
7. Nakrani, S., Tovey, C.: On honey bees and dynamic allocation in an internet server colony.

Adapt. Behav. 12(3–4), 223–240 (2004)
8. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE

International Conference on Neural Networks No. IV, 27 Nov–1 Dec, pp. 1942–1948,
Perth Australia (1995)

9. Glover, F.: Heuristic for integer programming using surrogate constraints. Decis. Sci. 8, 156–
166 (1977)

10. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony
search. Simulation 76, 60–68 (2001)

11. Erol, O.K., Eksin, I.: A new optimization method: big bang big crunch. Adv. Eng. Softw. 37,
106–111 (2006)

12. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach
to solve structural optimization problems. Eng. Comput. 29, 17–35 (2013)

13. Kaveh, A., Talatahari, A.: A novel heuristic optimization method: charged system search. Acta
Mech. 213, 267–289 (2010)

14. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering
optimization. Eng. Comput. 29(5), 464–483 (2012)

15. Yang, X.S., Deb, S.: Two-stage eagle strategy with differential evolution. Int. J. Bio-Inspired
Comput. 4(1), 1–5 (2012)

16. Yang, X.S.: Flower pollination algorithm for global optimization. In: Unconventional
Computation and Natural Computation 2012. Lecture Notes in Computer Science, vol. 7445,
pp. 240–249 (2012)

Application of the Flower Pollination Algorithm … 41



17. Kaveh, A., Khayatazad, M.: A novel meta-heuristic method: ray optimization. Comput. Struct.
112–113, 283–294 (2012)

18. Yang, X.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for
multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2012)

19. Majid, K.I.: Optimum design of structures. Newnes-Butterworth, London (1974)
20. Li, J.P., Balazs, M.E., Parks, G.T.: Engineering design optimization using species-conserving

genetic algorithms. Eng. Optm. 39(2), 147–161 (2007)
21. Nowcki, H.: Optimization in pre-contract ship design. In: Fujita, Y., Lind, K., Williams, T.

J. (eds.) Computer Applications in the Automation of Shipyard Operation and Ship Design,
vol. 2, pp. 327–338. Elsevier, New York (1974)

22. Park, Y.C., Chang, M.H., Lee, T.Y.: A new deterministic global optimization method for
general twice differentiable constrained nonlinear programming problems. Eng. Optim. 39(4),
397–411 (2007)

23. Ray, T., Saini, P.: Engineering design optimization using a swarm with an intelligent
information sharing among individuals. Eng. Optm. 33(6), 735–748 (2001)

24. Tsai, J.: Global optimization of nonlinear fractional programming problems in engineering
design. Eng. Optim. 37(4), 399–409 (2005)

25. Gold, S., Krishnamurty, S.: Trade-offs in robust engineering design. In: Proceedings of the
1997 ASME Design Engineering Technical Conferences, DETC97/DAC3757, 14–17 Sept,
Saramento, California (1997)

26. Wang, G.G.: Adaptive response surface method using inherited latin hypercube design points.
Trans. ASME 125, 210–220 (2003)

27. Hsu, Y.L., Liu, T.C.: Developing a fuzzy proportionalderivative controller optimization
engine for engineering design optimization problems. Eng. Optm. 39(6), 679–700 (2007)

28. Rao, S.S.: Engineering optimization: theory and practice, 3rd edn. Wiley, Chichester (1996)
29. Fleury, C., Braibant, V.: Structural optimization: a new dual method using mixed variables.

Int. J. Numer. Meth. Eng. 23, 409–428 (1986)
30. Chickermane, H., Gea, H.C.: Structural optimization using a new local approximation method.

Int. J. Numer. Meth. Eng. 39, 829–846 (1996)
31. Thanedar, P.B., Vanderplaats, G.N.: Survey of discrete variable optimization for structural

design. J. Struct. Eng. ASCE 121(2), 301–306 (1995)
32. Lamberti, L., Pappalettere, C.: Move limits definition in structural optimization with sequential

linear programming. Part II Numer. Ex. Comput. Struct. 81, 215–238 (2003)
33. Huang, M.W., Arora, J.S.: Optimal design with discrete variables: some numerical

experiments. Int. J. Numer. Meth. Eng. 40, 165–188 (1997)

42 S.M. Nigdeli et al.



http://www.springer.com/978-3-319-26243-7


	2 Application of the Flower Pollination Algorithm in Structural Engineering
	Abstract
	1 Introduction
	2 Flower Pollination Algorithm
	3 Numerical Examples
	3.1 Pin-Jointed Plane Frame Optimization Problem
	3.2 A Three-Bar Truss System Optimization Problem
	3.3 Vertical Deflection Minimization Problem of an I-Beam
	3.4 Cost Optimization of Tubular Column Under Compressive Load
	3.5 Weight Optimization of Cantilever Beams
	3.5.1 Weight Optimization of Cantilever Beams (Example 1)
	3.5.2 Cantilever Beam Optimization (Example 2)


	4 Conclusion
	References


