Process Simulation with ASPEN PLUS #### CHE654 Course Notes #### Section 7: ASPEN PLUS ## **Physical Properties** These course materials are applicable to Version 8.4 of ASPEN PLUS ASPEN PLUSTM is a trademark of Aspen Technology, Inc., Burlington, MA, U.S.A. ## Physical Properties: "Soul" of Simulation #### Topics: Topics (Cont'd): Overview **Special Topics** - Tabular data ☐ Choosing a Property Method - Parameter estimation (PCES) - Activity coefficient models Equation of state models **Property Reporting** - Special models Property Analysis ☐ Specifying Property Methods Property sets (PROP-SET) **Property Parameters** Requirements - Databanks Input #### Overview of #### Physical Property System in #### **ASPEN PLUS** #### Overview - Accurate representation of physical properties is the key to meaningful simulation results. - **Example:** Acetone recovery column 1 #### Overview (Cont'd) Simulation results of the acetone recovery column using DSTWU 3 property methods were used No. of Stages Condenser Reboiler Duty (MMBtu/hr) Duty (MMBtu/hr) **IDEAL** 14 37.7 49.5 Ideal gas/solution (no binary parameters) NRTL-RK 52 37.4 50.7 γ model (binary parameters from databanks) 11 38.2 LK-PLOCK 52.1 EOS model (binary parameters estimated) ## x-y Diagram of Acetone/Water Using IDEAL #### x-y Diagram of Acetone/Water Using NRTL-RK #### x-y Diagram of Acetone/Water Using LP-PLOCK ## Overview (Cont'd) - ☐ The ASPEN PLUS property system supplies thermodynamic and transport properties for unit operation and stream calculations. - ☐ This is done through a base property method, which is a collection of models and methods for calculating properties. | Property | Purpose | |----------------------|---------------------------------------| | K-values | VLE, LLE calculations | | Enthalpy | Energy balance, heat duties | | Entropy | Work, efficiencies | | Free energy | Chemical equilibrium, phase stability | | Molar volume | Sizing | | Transport properties | Sizing | ## Example of a Base Property Method #### ☐ IDEAL Method - Assumes ideal gas for vapor calculations - Assumes ideal liquid for liquid calculations | Property | Method | Model | |-------------|--------------------------------------------------------|-------------------------| | K-values | $K_i = P_{VAP,i}/P$ (Raoult's law) | Antoine | | Enthalpy | $H_V = H_{IG}$ | Ideal gas heat capacity | | | $H_{L} = H_{IG} - \sum_{i} x_{i} \Delta H^{o}_{VAP,i}$ | Watson | | Entropy | | Ideal gas | | Free energy | | Watson | | Volume | | Rackett | | | | | 10 #### **ASPEN PLUS Property Methods** - ☐ There are over 60 property methods in ASPEN PLUS. - There is always at least 1 method suitable for any chemical system and under any operating condition. - ☐ Can be broadly divided into 2 categories - \square Activity coefficient models (often called γ models) - Equation of state models (EOS models) - ☐ The rest are special models, such as steam tables, amine package, sour water package, etc. Choosing a Property Method in **ASPEN PLUS** #### **Property Methods** Activity Coefficient Models (γ Models) VLE: $$\phi_i^{\ V} y_i = \gamma_i \phi_i^{\ OL} x_i$$ $$\textbf{h}^{L} = \sum ~\textbf{x_i}~(\textbf{h}^{\mathrm{O,IG}} + \Delta \textbf{h}^{\mathrm{O,L}}) - \textbf{R}\textbf{T}^2 \sum ~\textbf{x_i}~(\partial ~\ln \gamma_i \, / \, \partial \, \textbf{T})$$ V^L from Rackett model \square In essence, a γ model uses 2 methods to calculate properties - EOS for vapor properties and γ for liquid properties. 12 ## Essential Aspects of γ Models - Consists of 2 property methods one for vapor and one for liquid - Uses Henry's law to represent the VLE behavior of dissolved gases (supercritical components) - Henry's law parameters are available in A+ databanks. - The parameters are needed to predict the solubilities of dissolved gases. - ☐ Contains binary interaction parameters which are essential for accurate VLE representations - A+ contains interaction parameters for thousands of component-pairs in its databanks. #### γ Models in A+ - ☐ IDEAL method is a good example. - Uses ideal gas law to calculate T, P, and V of vapor - Uses Raoult's law to calculate properties of liquid - Important γ models in A+ are: - 1. IDEAL - 2. CHAO-SEA - Chao-Seader correlation - Appropriate for systems with hydrocarbons and light gases such as CO₂ and H₂S but with the exception of H₂ in crude towers and vacuum towers of refinery plants ## γ Models in A+ (Cont'd) #### 3. GRAYSON - Grayson-Streed correlation - Same applications as in Chao-Seader but can handle H₂. - 4. NRTL, NRTL-RK, NRTL-NTH, NRTL-HOC - Belong to the family of the NRTL model (Non-Random Two-Liquid) - Appropriate for mixtures containing polar and non-polar compounds, up to very strong nonideality - Can accurately describe the VLE and LLE of highly nonideal solutions - NRTL-xxx where xxx is an EOS for vapor side NRTL uses ideal gas for vapor, RK = Redlich-Kwong EOS, NTH = Nothnagel, HOC = Hayden-O'Connell 16 #### γ Models in A+ (Cont'd) #### 5. UNIQUAC, UNIQ-RK, UNIQ-NTH, UNIQ-HOC - Belong to the family of the UNIQUAC model - Same applicability as the NRTL model - Can accurately describe the VLE and LLE of highly nonideal solutions - Contains the same variations as those of NRTL for the vapor #### 6. WILSON, WILS-RK, WILS-NTH, WILS-HOC, WILS-GLR, #### WILS-LR, WILS-HF - Belong to the family of the Wilson model - Same applicability as the NRTL and UNIQUAC models, except it cannot handle 2 liquid phases 17 ## γ Models in A+ (Cont'd) #### 6. WILSON, WILS-RK, WILS-NTH, WILS-HOC, WILS-GLR, #### WILS-LR, WILS-HF (Cont'd) - WILS-HF uses a special HF EOS and is good for mixtures containing hydrogen fluoride, which associate strongly in the vapor phase to form hexamers and other-mers, affecting VLE and enthalpy - WILS-GLR allows either ideal gas or liquid as the enthalpy reference state. - WILS-LR uses the liquid enthalpy reference state. - Both GLR and LR use ideal gas for the vapor side. <u>Note</u>: In all property methods of A+ (except those mentioned otherwise), the reference state for enthalpy is ideal gas at 25 °C and 1 atm. #### γ Models in A+ (Cont'd) #### 7. VANLAAR, VANL-RK, VANL-NTH, VANL-HOC - Belong to the family of the Van Laar model - Similar applicability as NRTL, UNIQUAC, and WILSON, except it is less accurate. - Not recommended because of missing binary interaction parameters from A+ databanks #### 8. UNIFAC, UNIF-LL, UNIF-DMD, UNIF-HOC, UNIF-LBY - Belong to the family of UNIFAC model, a group-contribution approach - Predictive => will estimate the binary interaction parameters between every component pair, except dissolved gases and solvents. - Same applicability as the other γ models, but should only be used for - preliminary design calculations but not for final. ## γ Models in A+ (Cont'd) #### 8. UNIFAC, UNIF-LL, UNIF-DMD, UNIF-HOC, UNIF-LBY (Cont'd) - UNIFAC uses RK EOS for the vapor. - The original version of UNIFAC can predict both VLE and LLE. So UNIFAC is good for VLE and UNIF-LL is good for LLE. - Two modifications to the original UNIFAC Named after the location of the universities where they were developed - 1. Lyngby in Denmark - 2. Dortmund in Germany activity coefficient at infinite dilution is improved. - The modifications are as follows: - Include more temperature-dependent terms of the group-group interaction parameters - Predict VLE and LLE with a single set of parameters - Predict heats of mixing better 19 ## Characteristics of γ Models - ☐ Advantage - Ability to represent highly nonideal liquid mixtures - Disadvantages - Many parameters required and they are highly temperature dependent - Cumbersome for supercritical components - Inconsistent in critical region; hence, only accurate at low and moderate pressures 2 #### **Another Class of Property Methods** ☐ Equation of State Models (EOS Models) VLE: $$\phi_i^V y_i = \phi_i^L x_i$$ Enthalpy: $h^V = h^{IG} + \Delta h^V$ $h^L = h^{IG} + \Delta h^L$ Volume: V^V from EOS V^L from EOS ☐ In essence, an EOS model uses only one method to calculate properties of both vapor and liquid #### EOS Models in A+ Important EOS models in A+ are: - ☐ Traditional EOS Models - 1. BWR-LS - BWR-Lee-Starling virial-type equation of state - 2. LK-PLOCK - Lee-Kesler-Plocker virial-type equation of state 2 #### EOS Models in A+ (Cont'd) #### 3. RK-SOAVE, RKS-BM - Based on the Redlich-Kwong-Soave cubic equation of state - Appropriate for non-polar and mildly polar compounds in gas processing, refinery, and petrochemical applications - RKS-BM contains the Boston-Mathias modification, making it more accurate for light gases at highly reduced temperature (> 5). #### 4. PENG-ROB, PR-BM - Based on the Peng-Robinson cubic equation of state - PR-BM contains the same modification as in RKS-BM. ## EOS Models in A+ (Cont'd) | All 4 EOS models are appropriate for non-polar and mildly polar | |------------------------------------------------------------------------------------| | mixtures, such as hydrocarbons and light gases (e.g. CO_2 , H_2 S, and H_2) | | All 4 models give comparable results but RKS and PR are more | | accurate. Accuracy PR > RKS > BWR-LS > LK-PLOCK | | All models contain at least 1 binary interaction parameter. | | Built-in parameters are available in A+ databanks for all above EOS | | methods. | | If built-in parameters are missing in databanks, only LK-PLOCK has | | built-in correlations to estimate the binary parameters. | #### Characteristics of Traditional EOS Models - Advantages - Fewer binary parameters than γ models - Some degree of nonideal behavior without binary parameters - Unencumbered by the presence of supercritical components - Consistent in critical region; hence, accurate even at high pressures - Disadvantage - Limited in ability to represent highly nonideal behavior #### Flexible and Predictive EOS Methods Combine the best characteristics of both γ and EOS methods Can handle highly nonideal mixture with high accuracy; at the same time, work well near critical region of mixtures (high-pressure and temperature conditions) Can handle liquid-liquid separation at high pressures too Different from traditional EOS in that binary interaction parameters can be estimated using various mixing rules 2 #### Flexible and Predictive EOS Methods (Cont'd) - ☐ There are 3 main types of EOS under this predictive category: - 1. RKSMHV2, RKSWS, PSRK - 2. PRMHV2, PRWS - 3. SR-POLAR #### PSRK, RKSMHV2, RKSWS The following mixing rules are used to predict interactions at any pressure for each EOS: <u>Predictive EOS</u> <u>Mixing Rules</u> RKSMHV2 MHV2 RKSWS Wong-Sandler PSRK (Predictive RKS) Holderbaum-Gmehling 29 #### PRMHV2, PRWS - All are extensions of the Peng -Robinson EOS. - ☐ The following mixing rules are used to predict interactions at any pressure for each EOS: <u>Predictive EOS</u> <u>Mixing Rules</u> PRMHV2 MHV2 PRWS Wong-Sandler #### **SR-POLAR** - ☐ Based on an equation-of-state model by Schwarzentruber and Renon, which is an extension of the Redlich-Kwong-Soave equation of state - ☐ Can apply the method to both non-polar and highly polar components, and to highly nonideal mixtures. - Recommended for high temperature and pressure applications - ☐ If you do not enter binary parameters, A+ estimates them automatically using VLE data generated from the UNIFAC group contribution method. 3 #### Choosing a Property Method for Nonideal Systems #### **Special Property Methods** ☐ Steam Tables for pure water and steam systems #### 1. STEAM-TA - 1967 ASME steam table correlations - 273.15 K < T < 1073 K - Maximum pressure = 1000 bar #### 2. STEAMNBS - 1984 NBS/NRC steam table correlations - 273.15 K < T < 2000 K - Maximum pressure = 10000 bar 33 #### Special Property Methods (Cont'd) ☐ Crude oil and petroleum refinery #### 3. BK-10 - Uses the Braun K-10 K-value correlations - All parameters for BK-10 are built-in - Developed from the K10 charts for both real components and oil fractions - The real components include 70 hydrocarbons and light gases - The oil fractions cover boiling ranges $450 700 \text{ K} (350 800 \,^{\circ}\text{F})$ - Suited for vacuum and low pressure applications (up to several atm) - For higher pressures, use CHAO-SEA or GRAYSON instead ## Exercises in Choosing an Appropriate Property Method | | Chemical System | Operating Condition | Suitable Methods | |----|---------------------------------------------------------------------------------------------------|---------------------|------------------| | 1. | Acetone, water | 1 atm | ??? | | 2. | $\mathrm{C_1C_6},\mathrm{H_2},\mathrm{CO_2}$ | Any pressure | ??? | | 3. | Benzene, toluene, xylenes | 2 atm | ??? | | 4. | $\begin{aligned} & \text{Hydrocarbons, N}_{2,} \\ & \text{H}_2 \text{ S, CO, CO}_2 \end{aligned}$ | 1-3 atm | ??? | | 5. | Ethanol, water, acetic acid | 1-2 atm | ??? | ## Exercises (Cont'd) | | Chemical System | Operating Condition | Suitable Methods | |-----|------------------------------|-----------------------|------------------| | 6. | Hydrocarbons, N ₂ | Very high temperature | ??? | | | $H_2 S, CO_2$ | | | | 7. | Propanol, water, | 1-2 atm | ??? | | | methanol, MEK, O_2 | | | | 8. | Benzene, water, | 1-3 atm | ??? | | | ethanol | | | | 9. | Benzene, water, | 10-15 atm | ??? | | | ethanol | | | | 10. | Water and steam Any | y pressure | ??? 36 | #### References on Property Method Selection - Use Help in A+ to find "Guidelines for Choosing a Property Method" or press "Methods Assistant" button in the ribbon of A+. - Recommendations for electrolytes, non-electrolytes, and pseudocomponents - Decision trees - ☐ Be sure to read the following article by Eric Carlson - Don't Gamble with Your Physical Properties, Chemical Engineering Progress, October 1996, pp. 35-46. Specifying Multiple Sections and Multiple Property Methods in ASPEN PLUS #### Specifying Property Methods in a Simulation - There are 2 levels of specifying property methods in A+: - 1. Specify a single base method for the entire flowsheet (default) - Enter a base method in the Global sheet of Properties Specifications - 2. Specify different methods for use in individual flowsheet sections or individual unit operation blocks - Must first partition the flowsheet into different sections - Each flowsheet section may comprise one or more unit operation blocks - Then assign a property method to each section 39 ## Example of Multiple Flowsheet Sections and Property Methods - Consider a process consisting of the following 3 sections: - 1. SECTION1: Low pressure, hydrocarbons and light gases Use RK-SOAVE - 2. SECTION2: Low pressure, nonideal liquid with dissolved gases Use NRTL-RK - 3. SECTION3: High pressure, nonideal liquid with dissolved gases Use SR-POLAR ## Multiple Flowsheet Sections and Property Methods 41 ## Multiple Flowsheet Sections and Property Methods #### Input Data for the Multiple Sections Example - HC-FEED: Hydrocarbons feed - $-T = 100 \, {}^{\circ}F$, $P = 20 \, psia$ - Benzene, toluene, and n-butane at 1000 lbmol /hr each - ☐ ALCOHOL : feed with alcohol and light gases - -T = 100 ° F, P = 20 psia - Hexanol and ethanol at 500 lbmol/hr each - $-N_2$ at 50 lbmol/hr and CO_2 at 30 lbmol/hr - COLUMN-1 : DISTIL block - Nstage = 10, Feed tray location = 5, RR = 2, D:F = 0.6 - Ptop = 14.7 psia, Pbot = 16.0 psia ## More Input Data - LP-COL: Low-pressure DISTIL block - Nstage = 15, Feed tray location = 8, RR = 1, D:F = 0.6 - Condenser = Partial, Ptop = 14 psia, Pbot = 15 psia - HP-COL: High-pressure DISTIL block - Nstage = 20, Feed tray location = 10, RR = 2, D:F = 0.3 - Ptop = 200 psia, Pbot = 210 psia - PUMP - Discharge pressure = 220 psia #### Creating Multiple Sections in a Flowsheet □ First, one must create new sections (default is one section called GLOBAL). □ Create / rename new sections in Flowsheet pulldown menu □ Then, assign each unit operation block to a section as follows: Highlight a unit operation block Bring up the block pop-up menu with the right mouse button Choose Change Section from the pop-up menu □ Finally, assign a base property method to each section in the Flowsheet Sections tab of the Properties Specifications form #### Declaring Dissolved Gases as Henry's Law Components - Recall that in a γ method, all light gases must be treated as Henry's law components. - \square Must declare CO_2 and N_2 as Henry's law in the NRTL-RK method - Create a Henry ID in the SECTION2 of the Flowsheet Sections tab - Press the Next button and A+ will bring up a form for you to declare a list of Henry's components (can also be accessed via Components-->Henry Comps from the Data Browser) ## Stream Results of the Multiple Sections Example | | ALCOHOL | HC-FEED | HEAV-HCS | HP-BOT | HP-TOP | LP-BOTS | LP-TOP | PUMP-OUT | TO-LPCOL | TOP-COL1 | |---------------------|-----------|-----------|------------|-----------|-----------|----------|-----------|----------|------------|------------| | Temperature F | 100 | 100 | 225.6 | 432.6 | 384.5 | 250 | 187.9 | 248.3 | 154.3 | 55.8 | | Pressure psia | 20 | 20 | 16 | 110 | 100 | 15 | 14 | 220 | 16 | 14.7 | | Vapor Frac | 0 | 0.02 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | Mole Flow lbmol/hr | 1080 | 3000 | 1200 | 638.4 | 273.6 | 912 | 1368 | 912 | 2280 | 1800 | | Mass Flow lb/hr | 76843.768 | 228377.56 | 107613.086 | 63665.796 | 25380.804 | 89046.6 | 95410.254 | 89046.6 | 184456.854 | 120764.474 | | Volume Flow cuft/hr | 1528.31 | 22180.891 | 2201.178 | 1884.124 | 687.231 | 1901.983 | 664699.74 | 2142.452 | 3672.077 | 2689.423 | | Enthalpy MMBtu/hr | -145.878 | -34.18 | 16.453 | -61.979 | 2.46 | -69.911 | -32.458 | -69.798 | -129.425 | -47.829 | | Mole Flow lbmol/hr | | | | | | | | | | | | N-BUTANE | | 1000 | < 0.001 | | | | < 0.001 | | < 0.001 | 1000 | | ETHANOL | 500 | | | trace | < 0.001 | < 0.001 | 500 | < 0.001 | 500 | | | BENZENE | | 1000 | 210.705 | 0.001 | 0.14 | 0.141 | 210.564 | 0.141 | 210.705 | 789.295 | | TOLUENE | | 1000 | 989.295 | 155.808 | 256.207 | 412.014 | 577.28 | 412.014 | 989.295 | 10.705 | | HEXANOL | 500 | | | 482.591 | 17.253 | 499.844 | 0.156 | 499.844 | 500 | | | CO2 | 30 | | | | trace | trace | 30 | trace | 30 | | | N2 | 50 | | | | < 0.001 | < 0.001 | 50 | < 0.001 | 50 | | # Physical Property Parameters in ASPEN PLUS 49 ## **Physical Property Parameters** - Physical property models require parameters in order to calculate the requested physical property values. - ☐ <u>Example</u>: The Watson model - Used to calculate the heat of vaporization of a pure component at a given temperature - The model contains two A+ parameters: TC and DHVLWT - DHVLWT in turn contains 5 elements as shown in the next slide 51 #### Another Example: The Ideal Gas Heat Capacity Model #### Physical Property Parameters (Cont'd) - ☐ In A+, property parameters can be classified in 2 different ways: - 1. Based on components - 2. Constants or correlations #### ☐ Component-based parameters - Unary parameters --> associated with a single component - Binary parameters --> associated with a pair of components e.g. HENRY, $$a_{ii}$$ and b_{ii} in the γ methods, RKSKIJ, PRKIJ 53 #### Physical Property Parameters (Cont'd) #### Constants or Correlations - Universal constants --> not a function of temperaturee.g. MW, TC, PC, VC, TB - Correlation parameters --> a function of temperature e.g. CPIG, PLXANT, DHVLWT - Property parameters are stored in A+ property databanks. - ☐ Binary databanks for various property methods are automatically invoked. - All RKS-based and PR-based EOS methods - All γ methods except Van Laar #### Physical Property Databanks ☐ Important pure component databanks are: #### **1. APV84 PURE28** - Main source of pure component parameters - Contains parameters for 2,114 (mostly organic) components - Based on the data developed by the AIChE DIPPR data compilation project (January 2012 public DIPPR release) - The content is continually updated, expanded, and improved 55 #### Physical Property Databanks (Cont'd) #### 2. APV84 AQUEOUS • Contain parameters for electrolyte systems (1,688 ionic species) #### 3. APV84 INORGANIC • Contains thermochemical data for about 2,477 (mostly inorganic) components used in solids and pyrometallurgical applications #### 4. APV84 SOLIDS - Contains parameters for 3,312 solid components - Used for solids and electrolytes applications - Is largely superceded by the INORGANIC databank, but is still essential for electrolytes applications. #### Physical Property Parameters Requirements - Do not assume A+ contains a complete set of property parameters for the compounds and base methods you choose for simulation. - After choosing the chemical components and base methods, the user should: - 1. Determine what parameters are required for the property methods you chose. - 2. Determine what parameters are available in the databanks. 57 #### Parameter Requirements (Cont'd) - 3. If there are missing parameters in the databanks, supply the missing values - from literature or experimental sources - from estimation (PCES) - from data regression - Note: If you are not familiar with any of the parameters, be sure to use Help to examine the equation in which the parameter is used. #### **Exercise on Property Parameter** | Suppose you come across an A+ parameter called RKTKIJ , and you | |---------------------------------------------------------------------------------------------------| | don't know what it is. | | How do we find out what it is and where it is used (i.e. what property equation contains RKTKIJ)? | | Answers: | | 1. RKTKIJ is | | 2. Property that uses RKTKIJ | | 3. Name of the property equation that contains RKTKIJ | | | ## Steps in Checking the Property Requirements - To determine what parameters are required for a given property method, follow these three steps: - Always needed: MW, CPIG (or CPIGDP), PLXANT, and DHVLWT (or DHVLDP) except for EOS models - 2. Special situations: - Chemical reactions: DHFORM, DGFORM (for RGIBBS model) - When Stdvol basis is used for feed: VLSTD - When Free-water calculations is requested: WATSOL - Declare Henry's law components: HENRY for each dissolved-gas solvent pair #### Steps in Checking the Property Requirements (Cont'd) - 3. Use A+ Help to find the property method and check its property requirement table - 4. If transport properties are requested, check the hypertext link to <u>Parameters Required for Common Models</u> in each method - **Example**: Find all property parameters required in the IDEAL method 6 63 ## Summary of Parameters Required in IDEAL - ☐ Suppose all transport properties are requested in the simulation - MW, CPIG, PLXANT, DHVLWT - -TC, PC, VC, ZC - MUP, STKPAR or LJPAR for vapor mixture viscosity and diffusivity - OMEGA for surface tension - MULAND for liquid mixture viscosity - TB for liquid mixture thermal conductivity - VB for liquid diffusivity ## Exercise: Parameters Required in NRTL-RK | Consider a mixture of acetone, water, ethanol, CO , O_2 , an | d CO ₂ | |------------------------------------------------------------------|-------------------| | All light gases participate in an equilibrium reaction. | | | Liquid viscosity and vapor thermal conductivity are reque | sted. | | Determine all the required parameters if we use NRTL-RI | K method | | | | | | | | _ | | | | | ## Parameters Input - Two reasons for entering your own values of parameters - The required values are missing from the A+ databanks. - User wants to use his/her own values, which may be more accurate. - ☐ A+ property parameters are classified as follows - Pure Component - Scalar or T-dependent correlation - Binary Interaction - Scalar or T-dependent correlation 65 #### Parameters Input (Cont'd) - ☐ It is very important that you know what category a parameter belongs to - So that you can enter its value at the proper location (or form) - ☐ Example: A mixture of 3 components, formic acid, vinyl acetate, and water - Formic acid: VC = 139 cc/gmol, PC = 65.9 atm, ZC = 0.242 - Vinyl acetate: Heat of vaporization at NBP (346 K) = 6500 cal/gmol - Rackett k_{ii} : Formic acid Water = 1.27 Formic acid - Vinyl acetate = -1.54 67 #### Entering Parameter Values for Formic Acid #### Entering Parameter Values for Vinyl Acetate #### **Entering the Rackett Interaction Parameter** #### **Special Topic:** #### Tabular and Polynomial #### Physical Property Data 74 ## Entering Tabular/Polynomial Data in A+ - User may have tabular property data from experiments - e.g. vapor pressure vs. temperature data - User may have polynomial property data (coefficients) that do not conform to the equations in A+ $$- e.g. C_P^{IG} = a_1 + a_2 T + a_3 / T + a_4 / T^2$$ - How do we specify PLXANT with the vapor pressure vs. T data we have? - How do we specify CPIG with the non-standard polynomial equation we have? #### Entering Tabular/Polynomial Data (Cont'd) - Answer: We cannot, unless we use the Data Regression System (DRS) in A+ to regress or fit PLXANT and CPIG from the data we have. - ☐ <u>Simpler Alternative</u>: - Use the Tabpoly feature in A+ to enter the data directly - Any T-dependent property can be entered this way - Access Tabpoly by choosing the TabPoly folder under Properties of the Data Browser 7: #### Entering Tabular/Polynomial Data (Cont'd) For polynomial data in Tabpoly, you enter the coefficients of a polynomial equation of the form: property or $$a_1 + a_2 T + a_3 T^2 + a_4 T^3 + a_5 / T + a_6 / T^2 + a_7 / T^{1/2} + a_8 \ln T$$ - The property is either normal or logarithmic. - ☐ Caution: A+ uses your tabular data directly, and does not fit a polynomial equation to your data. For a temperature not explicitly given, A+ uses interpolation between 2 values to determine the property. #### **Tabpoly Properties** <u>Property</u> <u>Model Form</u> Density for non-conventional components Enthalpy for non-conventional components Normal Enthalpy of fusion Normal Enthalpy of sublimation Normal Enthalpy of vaporization Normal Henry's constant Logarithmic Ideal gas enthalpyNormalIdeal gas heat capacityNormalLiquid diffusion coefficientNormalLiquid enthalpyNormalLiquid enthalpy departureNormal Liquid entropy Normal Liquid entropy departure Normal #### Tabpoly Properties (Cont'd) <u>Property</u> <u>Model Form</u> Liquid fugacity coefficient for a component in a mixture Logarithmic Liquid Gibbs free energy Normal Liquid Gibbs free energy departure Normal Liquid heat capacity Normal Liquid-Liquid K-value Logarithmic Liquid thermal conductivity Normal Liquid viscosity Logarithmic Liquid volume Normal Pure component liquid fugacity coefficient Logarithmic Pure component vapor fugacity coefficient Logarithmic Solid enthalpy Normal Solid enthalpy departure Normal Solid entropy Normal Solid entropy departure Normal #### Tabpoly Properties (Cont'd) <u>Property</u> <u>Model Form</u> Solid fugacity coefficient Logarithmic Solid Gibbs free energy Normal Solid Gibbs free energy departure Normal Solid heat capacity Normal Solid thermal conductivity Normal Solid vapor pressure Logarithmic Solid volume Normal Surface tension Normal Vapor diffusion coefficient Normal Vapor enthalpy Normal Vapor enthalpy departure Normal Vapor entropy Normal Vapor entropy departure Normal # Tabpoly Properties (Cont'd) <u>Property</u> <u>Model Form</u> Vapor fugacity coefficient for a component in a mixture Logarithmic Vapor Gibbs free energy Normal Vapor Gibbs free energy departure Normal Vapor heat capacity Normal Vapor-Liquid K-value Logarithmic Vapor pressure Logarithmic Vapor thermal conductivity Normal Vapor viscosity Normal Vapor volume Normal #### Examples of Tabular/Polynomial Data Example 1: Enter the following tabular vapor pressure data for ethylene and propylene | <u>Temperature</u> (^O F) | Ethylene Vapor P | Propylene Vapor P | | |--------------------------------------|------------------|-------------------|----| | -120 | 38.5 psia | 1.85 psia | | | -100 | 62 | 3.8 | | | -40 | 210 | 20.9 | | | 0 | 385 | 48 | | | 20 | 510 | 69 | | | 40 | 660 | 97 | 79 | # Specification Sheet of Tabpoly #### Data Sheet of Tabpoly #### Examples of Tabular/Polynomial Data ☐ Example 2: Enter the following equations for the heat of vaporization of ethylene $$\Delta H^{VAP}$$ (ethylene) = 36,000 + 250T + 1.35 x 10⁷/T² Note: The use of tabular and polynomial data input decreases property parameter requirements For example, in the IDEAL method, if volume vs. T data are available, PC, VC, and ZC are not required for that component. #### Data Sheet of Tabpoly # Workshop 4: Introducing a Non-Databank Component into the VCM Flowsheet ☐ Go to Course Notes Section 9 and work on Workshop 4. #### **Special Topic:** # Property Constant Estimation System (PCES) 8 #### **Property Constant Estimation System (PCES)** - A system to estimate property parameters required by A+ including - Pure component physical property constants - Temperature-dependent pure component parameters - Binary interaction parameters for Wilson, NRTL, and UNIQUAC - ☐ PCES uses the concept of group-contribution based on the molecular structure of a compound. - Experimental data can be combined with the molecular structure to enhance the accuracy of PCES. #### Two Ways to Use PCES #### On a Stand-Alone Basis - A+ estimates all parameters without flowsheet simulation - Recommended because it gives user a chance to first view estimated results - Invoke by choosing Properties and click Estimation in the ribbon. #### ☐ In a Simulation Run - A+ estimates all missing parameters that are required in a simulation run 8 #### Two Property Estimation Schemes - ☐ Evaluate using NIST TDE (The ThermoData Engine from National Institute of Standards and Technology) - New in Version 7.3 - TDE can only use molecular structure saved in an MDL file (*.mol) or specified using the drawing tool in the User Defined Component Wizard. It cannot use molecular structure specified by atom and connectivity. - Estimate using Aspen property estimation system. - Can use either MDL molecular structure or molecular specified by atom and connectivity. #### How to Use NIST TDE? #### To run TDE: - 1. Specify the component(s) on the Components | Specifications | Selection sheet. - 2. On the Home tab of the ribbon, in the Data Source group, click NIST. The NIST ThermoData Engine dialog box appears. Choose Pure or Binary mixture. - 3. Select the component from the list in the dialog box. For binary mixture properties select a component from the second list as well. - 4. If the CAS number or molecular structure is specified for each component, then the Evaluate Now button (for pure component properties) or Retrieve Data button (for binary mixture properties) is enabled. Click it to estimate property parameters. OR For pure component parameters, if neither CAS number nor molecular structure is specified, click Enter Additional Data. The User Defined Component Wizard appears, allowing you to specify the molecular structure and optionally other data about the component. You will be given the option to run TDE to estimate parameters after specifying data. #### How to Use NIST TDE? (Cont'd) | The | e following data can be sent to TDE: | |-----|---------------------------------------------------------------------------------| | | ☐ Vapor pressure data | | | ☐ Liquid density | | | ☐ Ideal gas heat capacity | | | □ Normal boiling point | | | ☐ Molecular structure (if specified using a version V2000 MDL file or using the | | | drawing tool in the User Defined Component Wizard) | Note: TDE takes a couple minutes to run on a typical computer. When TDE is finished, the results will appear in the TDE Pure window or the TDE Binary window #### Draw Structure Tool to Specify Molecular Structure PCES Results from NIST TDE Click to expand and see correlation B Ho ← w = > = + Simulation 1 - Aspen Plus V7.3.2 - aspenONE - F X Home View Developer Get Started A Cut DNS - 2 Setup Na Chemistry Qa Corpy - Unio Sets Methods Assistant Clipboard Units: Methods Qa Setup Na Chemistry Collean Parameters Draw A Clien Parameters Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Regression Clipboard Units: Methods Qa Setup Na Chemistry A Re Start Page × Estimation × TDE Pure Results × + All Rems In more comps Henry Comps UNIFAC Groups Polymers Methods Properties for X All Acentric Factor Parameters An Acentric Factor Critical compressibility factor Critical density (Liquid vs. Gas.) Critical pressure (Liquid vs. Gas.) Critical pressure (Liquid vs. Gas.) Critical temperature (Liquid vs. Gas.) Enthalpy of vaporization or sublit Heart capacity (Ideal gas.) Molecular weight Molecular weight Normal boiling point Solubility parameter Specific gravity at 60 F Standadi (liquid molar volume at Thermal conductivity (Gas.) Thermal conductivity (Gas.) Description Pitzer acentric factor Units ZC Critical compressibility factor 0.24 0.24 Specifications Selected Methods Critical pressure 300698 N/sqm 3006981.2 Critical temperatur © Parameters Display Interaction Electrolyte Pair Electrolyte Pair Electrolyte Pair Electrolyte Pair UNEFAC Groups UNEFAC Groups Elin Routes NC Props Tabpoly Otal kg/cum J/kmel DNIESSAT TDE expansion for liquid molar density TDE Watson equation for heat of vaporization 18.57561 Unitless 1.278182 Click to save estimated Thermal conductivity (Liquid vs. 840 Vapor pressure (Liquid vs. Gas) values in the run Viscosity (Gas) Data SEstimation Input Compare Results Compare Re Customize Results Normal boiling point 590.15 1.05 DELTA Solubility parameter @ 25 C 21782.5 (J/cum)**.5 21782.5 Specific gravity VLSTD API standard liquid molar volume 0.16086 cum/kmal PCES results KVTMLPO Watt/m-K KLTMLPO ThermoML polynomials for liquid thermal conductivity Watt/m-K TDE Wagner 25 liquid vapor pressure ThermoML notion □ C Simulation MUVTMLPO aluate Save Parame Required Properties Input Complete 100% 😑 • 92 #### How to Use Aspen Property Estimation System? #### To run Aspen Property Estimation System: - 1. Specify the component(s) on the Components | Specifications | Selection sheet. - 2. On the Home tab of the ribbon, in the Run Mode group, click Estimation. - 3. In the Setup sheet, choose whether you want to estimate all property parameters or just selected ones. - 4. Specify the molecular structure of the component with either one of the following methods: - (i) Draw/Import/Edit structure (Draw Structure Tool as in TDE). - (ii) Define molecule by its connectivity. - Assign a unique number to each atom, except H. - Enter the number of an atom, one by one, and specify the type of bond between every two atoms. 93 ## How to Aspen Property Estimation System? (Cont'd) - 5. Enter any experimental data using - If TB is known, it should be entered - If tabular data are available, enter them via Properties Data form or Tabpoly. However, Data form results are more accurate since data regression will be performed by A+. - As much experimental data should be entered as possible in order to prevent propagation of errors. - Remember: experimental data should always be used in preference to estimated values. #### Parameters Estimated by Aspen Property Estimation System #### Parameters Estimated by Aspen Property Estimation System #### Parameters Estimated by Aspen Property Estimation System ## **Example of PCES** - Estimate the pure component property parameters for a compound, called "2-chloro-3-phenylphenol" with a chemical formula of $C_{12}H_9ClO$. - ☐ This component is not in the A+ databanks. The structure of the compound is shown here: 98 # Example of PCES (Cont'd) ☐ All atoms, except H, are numbered. $$C_{1}$$ C_{1} $$T_B = 590.15 \text{ K}$$ #### Heat of vaporization data: | Temp (K) | ΔH^{VAP} (J/kmol) | |----------|------------------------------------| | 590.15 | $6.303 \text{x} 10^7$ | | 615.87 | $6.030 \text{x} 10^7$ | | 641.60 | 5.736×10^7 | | 667.32 | 5.416×10^7 | | 693.05 | $5.066 \text{x} 10^7$ | | 718.77 | 4.675×10^7 | | 744.50 | 4.224×10^7 | | | | 99 # **PCES** Example # PCES Example (Cont'd) ## PCES Example (Cont'd) 102 ## PCES Example (Cont'd) ## PCES Example (Cont'd) #### PCES Example (Cont'd) #### PCES Example (Cont'd) #### Results from A+ PCES - ☐ Estimated property constants/parameters from PCES can be found in the Estimation folder of Properties in the Data Browser. - The results in the Estimation folder are divided into Pure Component and T-Dependent tabs. - All results are in SI units. - A+ also automatically puts all estimated results into the Parameters folder of Properties in Data Browser. - By changing back to Simulation, PCES results can be immediately incorporated into a simulation run. - The values stored here use the same unit as specified in the Setup. - The values can be changed to any new desired unit. #### PCES Results from A+ in Parameters Folder #### A+ PCES Results: Pure Component Constants #### A+ PCES Results: T-Dependent Parameters #### A+ Complete Results: T-Dependent Parameters (Cont'd) #### Quick Exercise on Using PCES in a Simulation ☐ Consider a problem of flashing a mixture of benzene and our non-databank component, 2-chloro-3-phenylphenol, as follows: #### **Questions:** - 1. How much liquid is vaporized? - 2. Vapor and liquid compositions? # Property Reporting Property Analysis and Property-Sets (Prop-Sets) 113 # **Property Analysis** | Allows users to quickly check the validity of the property methods | |--------------------------------------------------------------------| | chosen before starting a full simulation | | Requires a lot less input data than a flowsheet simulation | | Need only components and property method specifications | | Invoked by selecting Analysis in the ribbon | #### **Property Analysis** - Allows users to generate tables and plots of: - Pure properties - Thermodynamic e.g. vapor pressure vs. T, density vs. T - Transport e.g. viscosity vs. T - Binary properties, e.g. **T-xy**, **P-xy**, and **x-y** diagrams - Required input are: - Components - Base property method - Browse through the Binary Interaction folder of Method Parameters in the Data Browser **Example of Property Analysis** - Consider a simulation we want to make involving 4 components: - Acetone, Ethanol, Benzene, Toluene - Use Property Analysis to look at the following data before making the simulation run: - -A comparison of vapor pressure data of 4 components - Question: What is the relative volatility of the 4 components? - An **x-y** diagram of ethanol-benzene (at constant P of 1 atm) - Questions: Is the liquid of this binary system highly nonideal? Does this pair form an azeotrope? #### Pure Component Property Analysis - Vapor Pressure Data #### Comparison of Vapor Pressure #### Binary Property Analysis: T-xy and x-y Diagrams #### T-xy Diagram of Ethanol-Benzene System #### x-y Diagram of Ethanol-Benzene System #### **Exercise of Quick Property Analysis** - Add a fifth component to our example, namely water. - ☐ Use Quick Property Analysis to generate an **x-y** diagram of the benzene-water system at 1 atm. #### Ouestions: - 1. Do you need to specify anything special in the Binary Analysis input form in order to obtain a correct plot? - 2. What is this **x-y** plot telling us about the mixing of benzene and water? #### Property-Sets (Prop-Sets) - A set of properties requested by users for a pure component or a mixture - Specified in the Prop-Sets folder of the Properties in the Data Browser - Properties include: - Thermodynamic properties - Examples: CPMX (Constant pressure heat capacity of a mixture), GAMMA (Activity coefficient of a component in a mixture), and HIGMX (Ideal gas enthalpy of a mixture) 123 #### Prop-Sets (Cont'd) - Transport properties - Examples: KMX (Thermal conductivity of a mixture), RE (Reynolds number for a mixture), and MUMX (Viscosity of a mixture) - Petroleum-related properties - Examples: API (API gravity), FLASHPT (Flash point), and D86T (ASTM D86 temperature) - User-defined properties via a user FORTRAN subroutine #### Prop-Sets (Cont'd) - Applications: - Part of the stream reports - Used inside a design specification or Calculator block - Used with property table and plot generation - Tray properties for distillation models - We will see examples of the first 2 applications in a moment. 125 #### Application #1: Use Prop-Sets in Stream Reports - Consider Workshop 1, Flashing of Light Hydrocarbons: - Request A+ to report the following properties: - Viscosity, thermal conductivity, and Prandtl number of the vapor and liquid phases for all streams - 2. Constant pressure heat capacity of the total mixture for all streams - There are 2 steps to follow: - 1. Specify the properties in the 2 Prop-Sets. - 2. Specify that these Prop-Sets be included in the stream results. Some properties require additional qualifiers to uniquely determine the properties # Select Report Options Folder in Setup # Stream Results with Prop-Sets | | FLASH-F | HC-FEED | LIQUID | VAPOR | |-------------------------------|-----------|-----------|-----------|-----------| | Temperature F | 11.1 | 8.8 | -33.1 | -33.1 | | Pressure psia | 200 | 50 | 14.7 | 14.7 | | Vapor Frac | 0 | 0 | 0 | 1 | | Mole Flow lbmol/hr | 350 | 350 | 288.97 | 61.03 | | Mass Flow lb/hr | 17537.814 | 17537.814 | 15173.743 | 2364.071 | | Volume Flow cuft/hr | 484.896 | 483.687 | 393.81 | 18563.833 | | Enthalpy MMBtu/hr | -20.628 | -20.657 | -17.987 | -2.641 | | Mole Flow lbmol/hr | | | | | | C2 | 50 | 50 | 18.372 | 31.628 | | C3 | 100 | 100 | 78.906 | 21.094 | | N-C4 | 200 | 200 | 191.693 | 8.307 | | Mole Frac | | | | | | C2 | 0.143 | 0.143 | 0.064 | 0.518 | | C3 | 0.286 | 0.286 | 0.273 | 0.346 | | N-C4 | 0.571 | 0.571 | 0.663 | 0.136 | | CPMX Btu/lbmol-R | 28.507 | 28.561 | 28.12 | 14.19 | | *** VAPOR PHASE *** | | | | | | Conductivity Btu-ft/hr-sqft-R | | | | 0.007 | | Viscosity cP | | | | 0.007 | | PR | | | | 0.867 | | *** LIQUID PHASE *** | | | | | | Conductivity Btu-ft/hr-sqft-R | 0.068 | 0.068 | 0.076 | | | Viscosity cP | 0.166 | 0.168 | 0.24 | | | PR / | 3.368 | 3.401 | 4.11 | | #### Application #2: Use Prop-Sets in a Design-Spec - Consider again Workshop 1, Flashing of Light Hydrocarbons: - Replace the input pressure (1 atm) of the flash block with the calculated temperature, namely -33.3 ° F. - The calculated CPMX of the flash liquid outlet stream is 28.12 Btu/lbmol-R. - Suppose we want to set CPMX of the flash liquid outlet stream to be exactly 28.5 Btu/lbmol-R by varying the flash outlet temperature. 131 # Specify a Design-Spec to Control CPMX 132 #### Stream Results with Prop-Sets in the Design-Spec | | FLASH-F | HC-FEED | LIQUID | VAPOR | |-------------------------------|-----------|-----------|-----------|----------| | Temperature F | 11.1 | 8.8 | 1 1 | 1 | | Pressure psia | 200 | 50 | 39.74 | 39.74 | | Vapor Frac | 0 | 0 | 0 | 1 | | Mole Flow lbmol/hr | 350 | 350 | 333.729 | 16.271 | | Mass Flow lb/hr | 17537.814 | 17537.814 | 16930.168 | 607.647 | | Volume Flow cuft/hr | 484.896 | 483.687 | 460.687 | 1924.067 | | Enthalpy MMBtu/hr | -20.628 | -20.657 | -19.946 | -0.682 | | Mole Flow lbmol/hr | | | | | | C2 | 50 | 50 | 40.232 | 9.768 | | C3 | 100 | 100 | 95.436 | 4.564 | | N-C4 | 200 | 200 | 198.062 | 1.938 | | Mole Frac | | | | | | C2 | 0.143 | 0.143 | 0.121 | 0.6 | | C3 | 0.286 | 0.286 | 0.286 | 0.281 | | N-C4 | 0.571 | 0.571 | 0.593 | 0.119 | | CPMX Btu/lbmol-R | 28.507 | 28.561 | 28.5 | 14.451 | | *** VAPOR PHASE *** | | | | | | Conductivity Btu-ft/hr-sqft-R | | | | 0.009 | | Viscosity cP | | | | 0.008 | | PR | | | | 0.851 | | *** LIQUID PHASE *** | | | | | | Conductivity Btu-ft/hr-sqft-R | 0.068 | 0.068 | 0.07 | | | Viscosity cP | 0.166 | 0.168 | 0.181 | | #### In Summary #### ☐ Steps in Using A+ Physical Properties - 1. Determine the nature of the chemical system petroleum mixture, hydrocarbons, ideal or non-ideal, etc. Pick an appropriate property method to use. - 2. Specify all chemical components in the simulation. - 3. If unsure about the suitability of the property method, use Property Analysis to check the validity of the data. 135 #### In Summary (Cont'd) - 4. If there are components not found in the A+ databanks or with missing property parameters, determine what parameters need to be input for the chosen property method. - 5. Supply the missing parameters from - the literature - experimental data or lab data - 6. If cannot locate the missing data anywhere, use PCES to estimate the data.