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Abstract—Biogeography-based optimization algorithm (BBO) 
realizes the information circulation and sharing by using the 
species migration among habitats and achieves the global 
optimization by improving habitat adaptability. Based on the 
population adaptive migration mechanism, a chaotic 
biogeography-based optimization (CBBO) algorithm is 
proposed by combining the chaotic mapping strategy and the 
BBO optimal migration model. Simulation experiments are 
carried out to compare the optimization performances of the 
typical chaotic mapping methods on the function optimization 
problems. The simulation results and analysis show that CBBO 
algorithm has good optimization performance. The combination 
of migration model and chaotic map close to the natural law has 
higher optimization precision and faster convergence velocity.  

 
Index Terms—biogeography-based optimization algorithm, 

chaotic map, function optimization 

 

I. INTRODUCTION 

HE nature of function optimization problem is to find the 
optimal solution of an objective function through 

iterative [1]. The function features are usually described as 
continuous, discrete, linear, non-linear, convex function, etc. 
In that the constraint function optimization problem can be 
converted into unconstrained problem by using the designed 
special operators and penalty functions to make solution 
always feasible, the unconstrained function optimization 
problem is the main research focus. The swarm intelligent 
optimization algorithms [2] are a kind of random search 
algorithm to simulate the biological population evolution and 
evolution, which solves the complex global optimization 
problems through individual cooperation and competition 
between species, and is applied in many fields, such as 
multi-objective optimization, data mining, network routing, 
signal processing, pattern recognition, etc. The typical swarm 
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intelligence optimization algorithms include Ant Colony 
Optimization (ACO) algorithm [3], Genetic Algorithm (GA) 
[4], Bat Algorithm (BA) [5], Artificial Bee Colony (ABC) 
algorithm [6], etc. 

BBO Algorithm is a new type of swarm intelligent 
optimization algorithms and formally put forward by an 
American scholar Simon in 2008[7-8], whose basic idea is 
based on the species migration to complete the information 
flow between habitats. It achieves information sharing, the 
suitability improvement of habitats and obtains the optimal 
solution through adjusting immigration rate and emigration 
rate, migration topology, migration interval and migration 
strategies in the process of migration [9]. Compared with 
other swarm intelligent optimization algorithms, the main 
advantages of BBO algorithm are little adjusted parameters, 
simple implement, fast convergence velocity and high 
searching precision, which has been successfully applied in 
economic load assignment [10], combinatorial optimization 
[11], power distribution of wireless sensor network [12] and 
function optimization [13] and other global optimization 
problems. In this paper, the basic migration balance model of 
biogeography theory was elaborated. Seven migrating 
operators including the newly proposed migration ratio 
models have been used to realize the information sharing of 
BBO algorithm. Simulation results show that the different 
migration strategies have different influence on the 
optimization performance of BBO algorithm.  

Based on the standard migration models of BBO algorithm, 
a chaotic BBO (CBBO) algorithm is proposed by combining 
three kinds of chaotic map methods and three kinds of 
migration rate models. Simulation experiments show that the 
proposed algorithm has efficient searching performance. The 
paper is organized as follows. In section 2, the 
biogeography-based optimization algorithm is introduced. 
The chaotic biogeography-based optimization algorithm is 
described in section 3. The simulation experiments and results 
analysis are introduced in details in section 4. Finally, the 
conclusion illustrates the last part.  

II. BIOGEOGRAPHY-BASED OPTIMIZATION ALGORITHM 

A. Overview of BBO Algorithm 

The biogeography-based optimization (BBO) algorithm is 
derived from the biogeography discipline, which is primarily 
based on the distribution of species in nature. Species have 
certain rules according to which migration is conducted 
among disconnected islands through various barriers. Species 
can realize migrations among these islands by drifting, using 
the wind, and many other ways. A diagram illustrating 
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multiple habitats in biological geography is shown in Fig. 1. 
In addition to the relationship among the islands, each island 
has its own given factors and survival indicators, which is 
defined as the Habitat suitability index (HSI). The dependent 
index variables affecting the HSI are named the independent 
habitat variables. The higher the island's HSI index, the lower 
the immigration rate of the population. The 
biogeography-based optimization (BBO) algorithm adopts 
the integer coding rule. A probability-based migration 
operator (Habitat migration operator) is set up to enable 
information sharing among the individuals in the population. 
The individuals also have their antagonistic emigration rate 
  and the immigration rate   so as to control the movement 

probability of individuals.  

 
Fig. 1 Diagram of multi-habitats in biological geography. 
 

B. Basic Migration Balance Model of Biogeography 

A model representing the migration of a single species from 
an island is shown in Fig. 2 [15]. Assuming the ratio of 
emigration and immigration of the specie migration model of 
a single HS is   and  , respectively, then the number 

function of species in the island is established. 

 

Fig. 2 Species migration model of single island. 

It can be seen from Fig. 2 that when the number of species 
is zero, the emigration rate is zero, and when the number of 

species reaches the maximum capacity of species maxS , the 

emigration rate reaches the maximum value E. Similarly, 
when the number of species is zero, the immigration rate 
assumes the maximum possible value I. When the number of 

species reaches the maximum maxS , the corresponding 

emigration rate is zero. Equilibrium is reached at point 0S  

when the emigration rate   is equal to the immigration rate 

 . Using the BBO algorithm and assuming the number of 

species on an island is S  with probability sP , its change 

over time  ,t t t  can be described as follows. 
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When the number of species on the island is S  at time 

t t  , the island's emigration rate is s  and the immigration 

rate is s , and at least one of the following conditions is 

satisfied. (1) At time t , the number of species is S ; at time 

 ,t t t  , there is no emigration and immigration of the 

species. (2) At time t , the number of species is 1S  . At time 

 ,t t t  , there is at least one of the species available to 

immigrate. (3) At time t , the number of species is 1S  . At 

time  ,t t t  , there is at least one of the species available to 

emigrate. 
If t  is sufficiently small for this specie, the probability of 

emigration and immigration can be ignored regardless of 

other factors. Define maxn S  and 0 1[ , , , ]T
nP P P P  ，

( 0,1, , )sP S n   can be arranged into a single matrix： 
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Assuming E I , the situation depicted in Fig. 2 can be 

simplified by reducing it to that shown in Fig. 3 and Eq. 
(5)–(6). 

 

Fig. 3 Simplified species migration model on single island 
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where maxn S  and k  is the number of species. Thus, Eq. (4) 

can be reduced to: 
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If the species migration curves in each island (solution) are 

the same, it can be seen from Fig. 3, 2S  would represent a 

high HSI solution and 1S  would indicate a low HSI solution. 

The emigration rate of 1S  is lower than the corresponding 

emigration rate 2S . Likewise, the immigration rate of 1S  is 

higher than the immigration rate of 2S . The migration rate of 

each solution enables the shared information among islands. 
 

C. Migration Ratio Models 

Three migration ratio models commonly used in BBO 
algorithm are shown in Fig. 4. As shown in Fig. 4, the 

immigration rate k  and the emigration rate k  are the 

function of species diversity k in the habitat; I  indicates the 

maximum immigration rate; E  indicates the maximum 

emigration rate; 0k  is the number of species at the point of 

habitat equilibrium, that is to say the immigration rate is equal 
to the emigration rate at that point. 

 
Linear Migration Model 

As shown in Fig. 4(a), the immigration rate k  and the 

emigration rate k  calculated by Eq. (8) are the linear 

function of species diversity k  in the habitat at the linear 

migration ratio model (expressed as LBBO).  
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Seen from Fig. 4(a), when there is no species in the inhabit, 

it has the largest immigration rate I  and the emigration rate is 
zero. With the increase of species diversity, the habitat 
becomes crowded, so the possibility of immigration become 
smaller and smaller and more and more species move to the 
adjacent habitat, that is to say the emigration rate increases 
bigger. Finally, when species reached saturation n , the 
immigration rate is zero and the emigration rate reaches the 
maximum value E . 

   

(a) Linear migration   

 

(b) Cosine migration 

 

(c) Sine migration 

Fig. 4 Different migration ratio models 

 
Cosine Migration Model 

As shown in Fig. 4(b), the immigration rate k  and the 

emigration rate k  calculated by Eq. (9) are the cosine 

function of species diversity k  in the habitat at the cosine 

migration ratio model (expressed as cBBO).  
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Seen from the Fig. 4(b), when there are fewer or more 

species in the habitat, the change ratio of immigration rate and 
emigration rate are relatively stable. While the habitat has a 
number of species, the change of immigration rate and 
emigration rate are relatively faster.  

 
Sine Migration Model 
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As shown in Fig. 4(c), the immigration rate k  and the 

emigration rate k  calculated by Eq. (10) are the sine 

function of species diversity k  in the habitat at the sine 

migration ratio model (expressed as sBBO).  
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Seen from Fig. 4(c), the characteristics of this migration 

ratio model is contrary to the cosine migration ratio model. 
When there are fewer or more species in the habitat, the 
change of immigration and emigration rate are relatively fast, 
while the habitat has a number of species, the change of 
immigration rate and emigration rate are relatively stable. 

 

D. Algorithm Procedure 

The BBO algorithm is a method composed by using n  

habitats with a D -dimension SIV  fitness vector. iH  

represents the fitness value of the habitat i . By comparing the 

habitat values of iH  with maxS , the number of all species is 

denoted as n . Then, the remaining population of the habitat 

iS  is realized by the successive reduction i  according to iH  

from good to bad, that is to say maxiS S i   ( 1,2, ,i n  ). 

By the above calculation, the emigration rate   and 

immigration rate   of iH  can be obtained for the simplified 

migration model and the probability ( )iP K  of species 

contained in iH  can be calculated 

                           

  max
max

.(1 )S
S

P
M M

P
                         (11) 

 

Thus, the mutation rate iM  of each iH  is obtained. The 

global variables are composed of the highest emigration 

rate E , the immigration rate I , the mutation rate maxM , the 

number of the elite individual Z  and the global migration 

rate modP . The algorithm procedure is shown in Fig. 5.The 

flowchart is described as follows. 

Step 1: Initialize all parameters variables and SIV of iH  

vector for any chosen habitats. 

Step 2: For different suitability degree iH , sort the habitats 

from good to worse. Generally, the update rate of habitat is set 
as 1i  . 

Step 3: By comparison, if the desired optimum is reached, 
output the optimum and the algorithm procedure ends. 
Otherwise, continue to Step 4. 

Step 4: Suppose one specie in a habitat has the maximum 

number maxS n . Then by means of maxiS S i 

（ 1,2, ,i n  ） obtain the population value iS  of habitat i , 

further derive i  and i  from the migration model. 

 

 

Fig. 5 Flowchart of Biogeography-Based Optimization algorithm. 
 

Step 5: The cycle iteration number of modP  is the number of 

habitats n . modP  is used to judge whether i  meets the 

immigration condition. If it satisfies the corresponding 

condition, then enter the i  cycle. If ijSIV  satisfies the 

immigration condition, the emigration rate of other habitats 

m ( 1,2, , ,m n  m i ) is used to perform a random 

selection to select the m  characteristics component mjSIV  to 

replace the precedent i  characteristics component ijSIV . 

Step 6: By calculating the corresponding habitat iM , the 

judgment is carried out on the related variables of habitat i  to 

see whether the mutation occurs or not, then return to step 2 
for next cycle. 

III. CHAOTIC BIOGEOGRAPHY-BASED OPTIMIZATION 

ALGORITHM 

A. Chaotic theory 
Chaotic motion was found by American meteorologist 

Lorenz in 1963 when he simulated atmospheric turbulence 
experiment between two infinite planes and achieved the 
conclusion of Laplace certainty theory contrary to the 
experiments results, that is to say the results of random can be 
generated by deterministic equations. Subsequently, May 
created a new research direction of chaos on the 
characteristics of the random motion. The basic concepts of 
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chaos are described as follows: chaos is a kind of random 
motion state, which is obtained by the deterministic equation 
directly and not caused by the randomness of external factors 
[14]. The ergodicity of chaos movement makes the variable 
traverse all states in a certain range according to its rules and 
not to repeat. The system amplification effect makes the 
ultimate impact of a tiny movement far exceed the movement 
itself, such as a fan at the wings of a butterfly although in 
Britain and a typhoon may appear in China. 

Due to the ergodicity characteristics of chaotic mapping, 
the chaos optimization algorithm falling into the local 
optimum is avoided and the ability to fine searching is 
enhanced. On the other hand, although the searching 
optimization ability of BBO algorithm is in some extent 
superior to other swarm intelligence algorithms, the problem 
of premature convergence exists. Therefore, the hybrid and 
complementary of two algorithms become a research hotspot. 
Saremi S. adopts three kinds of chaotic mapping methods 
(Circle, Sine and Sinusoidal) to be combined into BBO 
algorithm and uses four benchmark functions to carry out 
simulation experiments in order to obtain the optimal solution 
and verify the performance of the proposed hybrid algorithm 
for the first time [15-16]. The simulation results show that the 
chaotic mapping Sine especially can better improve the BBO 
algorithm not easy to fall into local optimal and slow 
convergence speed, and realize the better balance between the 
exploration and development. In this paper, chaotic 
biogeography-based optimization algorithm (CBBO) is 
proposed by using the previously mentioned three optimal 
migration rate model and three best chaotic mapping 
strategies (Gauss/mouse, sine and Chebyshev) according to. 
That is to say the CBBO algorithms based on three mobility 
models are generated, namely CBBO-L, CBBO-s and 
CBBO-c. Then four test functions are selected to carry out 
simulation experiments to show the effectiveness of the 
proposed CBBO algorithms.  The search accuracy of 
variables is enhanced by narrowing the search space in the 
optimization process and the efficiency of searching is 
improved. 

 

B. Selection of Chaotic Mappings 
Three typical chaotic mappings adopted in this paper are 

shown in Table 1, whose solution set is in the range of (0, 1). 
Due to the greater influence of the initial value on the 
fluctuating pattern of chaotic mapping, the initialized points 
are set as 0.7. 

 
 TABLE 1 

EXPRESSION OF THREE CHAOTIC MAPS 

Map name Chaotic map expression Range 

Gauss/mouse 

1 0

1
o

mod( ,1)

i

i

x

j
therwise

x




 



 
（0,1） 

Sine 1 sin( ), 4
4

i i

a
x x a    （0,1） 

Chebyshev 1
1 cos( cos ( ))i ix i x
   (-1,1) 

C. Integration of Chaotic Mapping Strategies and BBO 
Operators 

The chaotic mapping operation is adopted to realize the 
selection, migration and mutation operators in BBO algorithm. 
The combination of chaos and selection operator and 
migration operator can improve the detection capability. The 
exploring capacity on the solution set is enhanced by the 
combination of mutation operator and chaos strategy. The 
chaotic mapping based two operators are described as 
follows.  

 
Chaos mapping and selection operator 

If the selection probability i  of a certain habitat in the 

species migration is defined by using chaotic mapping, it 
should be in the interval [0, 1]. Therefore, it can be 
standardized as [- 1,1]. The values of chaotic mapping replace 
the random values. The chaotic migration operator is 
described as follows.  

( ) iif C t then  

    tan iEmigrate habi ts from H to  

j iH chosen with the probability proportional to   

end if  
    In the chaotic selection operator, the t th iteration value 

of chaotic mapping is represented by ( )C t  and the i th 

habitat is iH . It can be seen from the above description that 

the chaotic mapping plays an important role in the choice of 
initial immigration rate. 

 
Chaos mapping and migration operator 

After selecting the habitat, the probability of species moved 
out of the execution is proportional to  . The chaotic map is 
used to calculate this probability, which is described as 
follows. 

( ) iif C t then  

    tan i jselect a random habi t in x and replace it with x  

end if  

In the chaotic migration operator, ( )C t  is the value of t th 

iteration of the chaotic mapping and ix  is the i th habitat. 

Seen from the above description, the chaotic mapping can 
define the emigration rate, whose range is [-1, 1]. 

In summary, the chaotic selection operator is helpful to 
BBO algorithm to select habitats in chaos states so as to 
improve the exploration ability. On the other hand, the chaotic 
migration operator allows the CBBO algorithm to carry out 
the migration operation in chaos pattern so as to enhance the 
exploration ability again. In addition, different chaotic maps 
are combined with the selection operator and the migration 
operator to form the different exploration and exploitation 
patterns in CBBO algorithm, so the global searching ability is 
enhanced. 

IV. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS 
The hybrid operator is realized by combining the three 

kinds of chaotic maps (Gauss/mouse, sine and Chebyshev) 
and the selection operator and migration operator in BBO 
algorithm. Three typical migration rate modes with better 
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optimization performance in BBO algorithm are adopted to 
produce three kinds of CBBO algorithm based on the 
different mobility models, namely CBBO-L, CBBO-s and 
CBBO-c. Their parameter settings are listed in Table 2. In 
order to verify the algorithm's effectiveness, four high 
dimensional benchmark functions (Griewank, Quartic, 
Ackley and Rastrigin) shown in Table 3 are selected to carry 
out the simulation experiments. Among these function 
optimization problems, the previous two functions are 
unimodal and the remaining two functions are multimodal. 
Under three kinds of chaotic mapping, the simulation 
experiments results for three CBBO migration rate models on 
four optimized functions are shown in Table 4 and Figure 6-8. 
Each optimization simulation experiment is run 
independently 50 times. 

It can be seen from Table 4 that the Gauss/mouse chaotic 
mapping are the best at both the optimal values and average 
values. The optimization effect of the chaotic mapping Sine is 
slightly inferior to that of Chebyshev chaotic mapping. For 
unimodal function optimization problems, CBBO-s and 
CBBO-c under Gauss/mouse chaotic mapping are better than 
CBBO-L, while in the other two kinds of chaotic mapping 
CBBO-L is best. For Ackley function under Gauss/mouse 
chaotic mapping and Sine chaotic mapping, the optimum of 
CBBO-L is better than other CBBO models and the optimum 
of CBBO-s is less than but close to CBBO-c. For Rastrigin 
function under Gauss/mouse chaotic mapping and Sine 
chaotic mapping, CBBO-s and CBBO-c also obtain the 
optimal value 0, and the optimal value and the average value 
was superior to CBBO-L. It can be seen from convergence 
charts that the convergence velocity of the multi-peak 
functions are slower than unimodal functions under three 
kinds of chaotic mapping, so the number of iterations to find 
the optimum is relatively high. In addition, under 
Gauss/mouse chaotic mapping, Quartic in iterative 100 times 

by using three CBBO models reaches minimum, but Ackley is 
slowest and it tends to the minimum until the end of the 
iteration. CBBO-s in optimization of Griewank and Ackley 
obtains the optimal value and for other functions three CBBO 
algorithms has same convergence velocity. Under Sine 
chaotic mapping, three CBBO algorithms for previous three 
functions firstly converge to the optimal value. Under 
Chebyshev chaotic mapping, Quartic and Rastrigin have the 
fastest convergence rate and three CBBO algorithms also 
reach the minimum at the same time. 

 
TABLE 2 

INITIAL PARAMETERS OF CBBO ALGORITHMS 

Parameters Values 

Number of population individual 30 

Probability of habitat change 1 

Migration probability of each species [0,1] 

Step probability of numerical integration 1 

Largest immigration rate (I) and the minimum emigration rate (E) 1 

Maximum Iterations 500 

 
TABLE 3 

TESTING FUNCTIONS 
Function Expression Scope Dimension 

Griewank 
2

1 1

cos 1
4000

n n
i i

i i

x x

i 

 
  

 
 

 
[-32,32] 30 

Quartic 4

1
[0,1)

n
ii

ix random


  [-1.28,1.28] 30 

Ackley 
2

1 1

1 1
( 0.2 ) ( cos( ))

20 20

n n

i i
i i

x cx
n ne e e 

  
    [-32,32] 30 

Rastrigin 
2

1

10cos(2 ) 10
n

i i
i

x x


   
 

[-5.12,5.12] 30 

 
TABLE 4 

FUNCTION OPTIMIZATION RESULTS BASED ON CBBO ALGORITHMS 

Function Chaotic map 

Gauss/mouse Sine Chebyshev 

Optimum Mean Optimum Mean Optimum Mean 

Griewank 

CBBO-L 1.763 1.836 12.227 14.306 4.075 27.005 

CBBO-s 1.636 1.809 12.896 13.114 4.387 13.029 

CBBO-c 1.729 2.082 12.588 13.786 4.337 10.245 

Quartic 

CBBO-L 3.381e-4 42.853e-3 0.130 1.537 9.467e-3 9.904e-3 

CBBO-s 3.065e-4 74151e-3 0.102 0.170 8.218e-3 11.797e-3 

CBBO-c 2.859e-4 4.094e-3 0.061 3.284 5.365e-3 2.592 

Ackley 

CBBO-L 3.594 4.023 9.120 9.374 5.774 6.394 

CBBO-s 3.832 3.838 9.375 10.978 5.535 6.966 

CBBO-c 3.857 4.296 9.396 11.865 5.835 6.168 

Rastrigin 

CBBO-L  0 0.033 8 13.433 1 1.033 

CBBO-s 0 0.033 7 8.033 0 0.566 

CBBO-c 0 0 7 8.233 0 0.333 
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Fig. 6 Simulation Results of CBBO Migration model under Gauss/mouse map. 
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Fig. 7 Simulation results of CBBO Migration model under Sine map. 
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Fig. 8 Simulation results of CBBO Migration model under Chebyshev map. 
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V. CONCLUSION 

The optimal chaotic mapping strategy and the optimal 
BBO migration models are combined in this paper. The 
simulation results show that the optimization performance of 
three chaotic mapping methods is in accordance with the 
following rule: Gauss/mouse < Chebyshev <Sine. Overall, the 
convergence velocity and optimization accuracy of CBBO-c 
and CBBO-s are better than CBBO-L. This shows the CBBO 
algorithm with the optimal chaos mapping strategy has better 
optimization effect due to its proximity to the migration 
model under natural law. 
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